Detection and Prediction of Peatland Cover Changes Using Support Vector Machine and Markov Chain Model

نویسنده

  • Lailan Syaufina
چکیده

Detection and prediction of peatland cover changes should be conducted due to high rate deforestation in Indonesia. In this work we applied Support Vector Machine (SVM) and Markov Chain Model on multitemporal satellite data to generate the correspondings detection and prediction. The study area is located in the Rokan Hilir district, Riau Province. SVM classification technique used to extract information from satellite data for the years 2000, 2004, 2006, 2009 and 2013. The Markov Chain Model was used to predict future peatland cover. The SVM classification result showed that the mean Kappa coefficient of peatland cover classification is 0.97. Between years 2000 and 2013, the wide of non vegetation areas and sparse vegetation areas have increased up to 307% and 22%, respectively. While the wide of dense vegetation areas have decreased up to 61%. We found that a 3 years interval used in the Markov Chain Model leads to more accurate results for predicting peatland cover changes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Detection and prediction of land use/ land cover changes using Markov chain model and Cellular Automata (CA-Markov), (Case study: Darab plain)

unprincipled changes in land use are major challenges for many countries and different regions of the world, which in turn have devastating effects on natural resources, Therefore, the study of land-use changes has a fundamental and important role for environmental studies. The purpose of this study is to detect and predicting of land use/ land cover (LULC) changes in Darab plain through the Ma...

متن کامل

Simulation of Future Land Use Map of the Catchment Area, with the Integration of Cellular Automata and Markov Chain Models Based on Selection of the Best Classification Algorithm: A Case Study of Fakhrabad Basin of Mehriz, Yazd

INTRODUCTION Since the land use change affects many natural processes including soil erosion and sediment yield, floods and soil degradation and the chemical and physical properties of soil, so, different aspects of land use changes in the past and future should be considered particularly in the planning and decision-making. One of the most important applications of remote sensing is land ...

متن کامل

Modeling land use changes using Markov chain model and LCM model

Land use maps are considered as the most important sources of information in natural resource management. The purpose of this research is to review, model, and predict landslide changes in the 30-year period by LCM model in Shiraz. In this research, TM Landsat 4, 5 and OLI Landsat 8 images were used for 1985, 2000 and 2015 respectively, as well as topographic maps and area coverage. Subsequent ...

متن کامل

Intelligent application for Heart disease detection using Hybrid Optimization algorithm

Prediction of heart disease is very important because it is one of the causes of death around the world. Moreover, heart disease prediction in the early stage plays a main role in the treatment and recovery disease and reduces costs of diagnosis disease and side effects it. Machine learning algorithms are able to identify an effective pattern for diagnosis and treatment of the disease and ident...

متن کامل

پایش و پیش‌بینی روند تغییرات کاربری اراضی با استفاده از تصاویر ماهواره‌ای و زنجیرۀ مارکوف (مطالعۀ موردی: حوزۀ آبخیز سمل- استان بوشهر)

Assessment of land use spatiotemporal changes provide valuable data for managers to elaborate plans. Land use change modeling is one of the methods used by planers to manage land use changes. Detection of such changes may help decision makers and planners to understand the factors in land use and land cover changes in order to take effective and useful measures. Remote sensing (RS) and geograph...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016